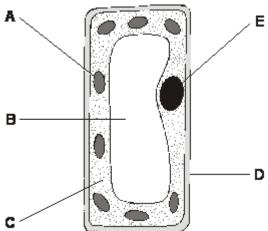
14+ ENTRANCE EXAMINATION

SAMPLE PAPER

SCIENCE

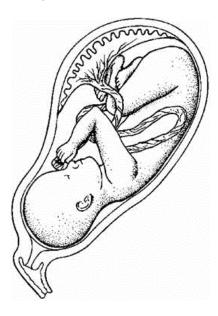
Read these instructions carefully

You have **one** hour in which to complete this examination.


Attempt all questions.

You may use a calculator if you wish.

Write your answers in the spaces provided.


The marks awarded are next to each question.

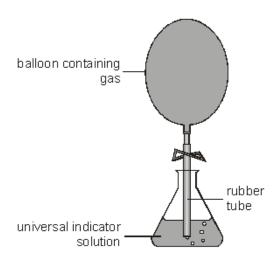
Q1. The diagram shows a plant cell.

/	D	
(a)	Give the name of part A.	
	Give the function of part A.	
		2 marks
(b)	Give the name of part E.	
	Give the function of part E.	
		2 marks
(c)	Give the letters of two parts that are present in plant cells but not in animal cel	ls.
	and	1 mark
(d)	How can you tell that the cell in the diagram is from a leaf and not from a root?	
	maximum	1 mark

Q2. The drawing shows a baby inside its mother's uterus.

Some substances pass from the mother's blood to the baby's blood. Other substances pass from the baby's blood to the mother's blood.

Which way, if any, do the substances in the table pass? Tick **one** box in each row.


substance	passes from the mother's blood to the baby's blood	passes from the baby's blood to the mother's blood	does not pass between the mother's blood and the baby's blood
poisons from cigarette smoke			
oxygen			
digested food			
carbon dioxide			

4 marks

Q3. A scientist compared the acidity of four gases to see which gas might cause acid rain. She used four balloons to collect the gases.

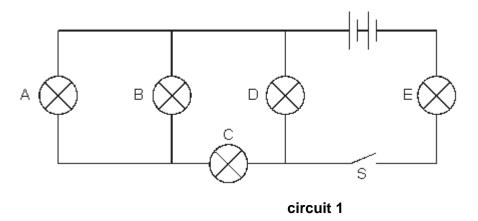
She then bubbled the gases, in turn, through a fresh sample of green, neutral,

universal indicator solution.

(a) Three of the gases caused the indicator to change colour.

The scientist added drops of alkali to the indicator until the indicator changed back to green.

Her results are shown in the table below.

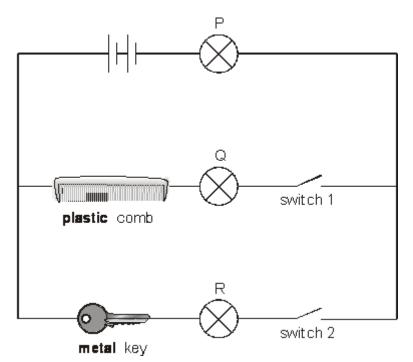

gases collected	change in colour of indicator	number of drops of alkali needed to change the indicator back to green
exhaust gases from a car	green to red	31
carbon dioxide	green to red	160
air	no change	0
human breath	green to yellow	10

Use information in the table to answer part (i) and part (ii) below.

(i)	Which gas dissolved to form the most acidic solution?	
	Explain your choice.	
		1 mark

	(ii)	Which gas formed a neutral solution?
		Explain your choice.
		1 marl
	(iii)	What effect does an alkali have on an acid?
(b)		e metals react with acids in the air. plete the word equation for the reaction between zinc and hydrochloric acid.
	zinc ·	+ hydrochloric → +

Q4. (a) Max built circuit 1 as shown below.


He closed the switch, S, and all the bulbs came on. One of the bulbs then broke and **all** the bulbs went off.

Which bulb must have broken? Give the letter.

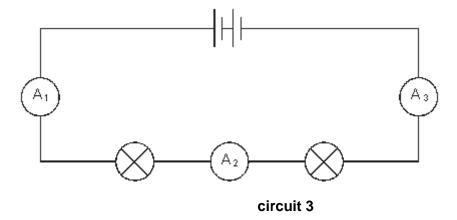
.....

1 mark

(b) Max built circuit 2 as shown below.He connected a plastic comb and a metal key in different parts of the circuit.

circuit 2

Look carefully at circuit 2.


Complete the table below to show which bulbs in circuit 2 will be on or off when different switches are open or closed.

Write on or off in the boxes below.

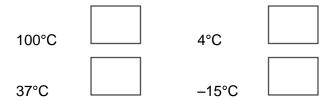
switch 1	switch 2	bulb P	bulb Q	bulb R
open	open	off	off	off
open	closed			
closed	open			

2 marks

(c) Max built **circuit 3** using a battery, two bulbs and three ammeters.

The current reading on ammeter A_1 was 0.8 amps. What would be the reading on ammeters A_2 and A_3 ? Place **one** tick in the table by the correct pair of readings.

readingon ammeter A₂(amps)	reading on ammeter A₃(amps)	correct pair of readings
0.8	0.8	
0.8	0.4	
0.4	0.8	
0.4	0.4	

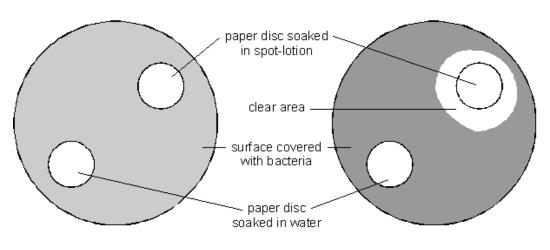

1 mark maximum 4 marks

Q5. Spots may be caused by bacteria in the skin. A researcher investigated the effect of spot-lotion on bacteria.

(a) He grew bacteria on the surface of jelly in a Petri dish.

At what temperature would the bacteria reproduce quickly?

Tick the correct box.



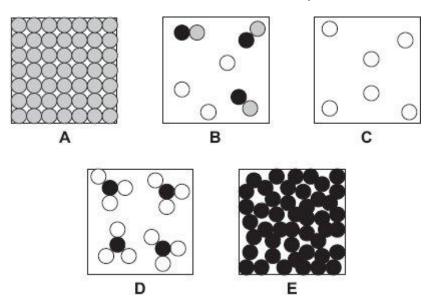
1 mark

(b) The researcher placed two small paper discs onto the surface of the jelly.

One disc had been soaked in spot-lotion. The other disc had been soaked in water.

The diagrams below show the jelly at the beginning of the experiment and two days later.

at the beginning of the experiment


two days later

	Suggest what had happened to the bacteria in the clear area around the paper disc soaked in spot-lotion.	
		1 mark
(c)	What was the control in this experiment?	
		1 mark

(d)	Give two safety precautions the researcher should take to avoid contact with the bacteria.			
	1			
	2			
	2 marks			
	Maximum 5 marks			

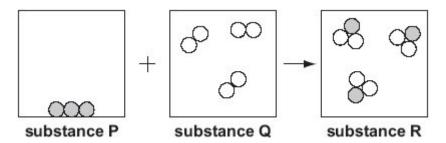
Q6. (a) The diagrams below show the arrangement of atoms or molecules in five different substances A, B, C, D and E.

Each of the circles , and represents an atom of a different element.

Give the letter of the diagram which represents:

(i) a mixture of gases;

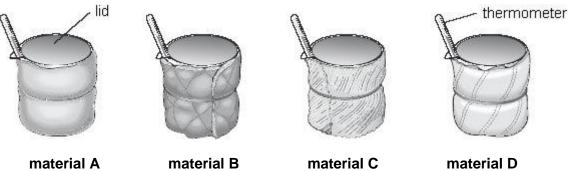
.....


1 mark

(ii) a single compound.

.....

1 mark


(b) The diagram below shows a model of a chemical reaction between two substances.

(i) How can you tell from the diagram that a chemical reaction took place between substance P and substance Q?

(ii)	Substance P is carbon.	
	Suggest what substances Q and R could be.	
	substance Q	
	substance R	1 mark
(iii)	How does the diagram show that mass has been conserved in this reaction?	
		1 mark
	maximun	n 5 marks

Q7.		mpany has made a new material called 'Wellwarm'. They want to use 'Wellwarm' to e coats.
	(a)	A scientist tested 'Wellwarm' to see how well it insulated a beaker of hot water. She tested 'Wellwarm' and three other materials as shown below.

She wrapped each beaker in a different material. She recorded the temperature at the start and 20 minutes later.

(i)	What was the independent variable that the scientist changed ?	
		1 mark
(ii)	What was the dependent variable that the scientist measured during the investigation?	
		1 mark

(b) The results of the investigation are shown below.

time	temperature of water (℃) wrapped in				
(minutes)	material A	material B	material C	material D	
0	60	60	60	60	
20	34	40	38	36	

20		34	40	38	36	
()	Whic		s 'Wellwarm'? Use	' material is the be e the results to help		
	а <u>Г</u>		3			1 mark

	(ii)	Use the evidence in the results table to explain your choice.	
			1 mark
c)	The	company made a coat from each of the four materials they tested.	
		erson tested the different coats by wearing each one in a cold room. measured the temperature inside each coat for 30 minutes.	
	Writ	e down two other variables that should be controlled to make this a fair test.	
	1		1 mark
	2		1 mark
d)		re down one thing the scientists should do to make sure the person testing thes is safe.	e
			1 mark
e)		gest one advantage of using a temperature sensor and data logger instead ermometer in this experiment.	of
			1 mark
		maximum	o marks

Q8. James shone a ray of light at a mirror as shown below.

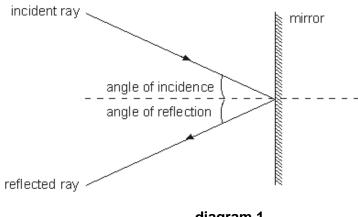


diagram 1

He measured the angle of **reflection** for different angles of incidence. His results are shown below.

angle of incidence (°)	30	40	50	60	70
angle of reflection (°)	30	40	50	65	70

(a)	Which angle of reflection was not measured accurately?	
	How can you tell this from the table?	
		1 mark

(b) James set up a different experiment as shown below.

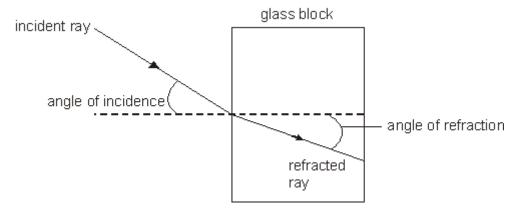
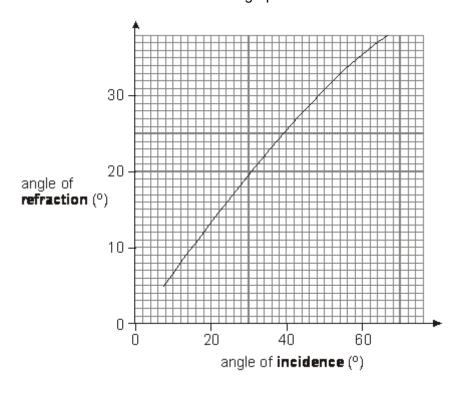



diagram 2

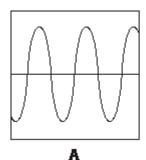
He measured the angle of **refraction** for different angles of incidence.

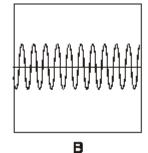
His results are shown in the graph.

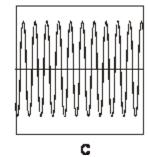
Use the graph to answer the questions below.

when the angle of refraction is 20°, what is the angle of incidence ?	
0	
	1 mark

(ii) What conclusion could James draw from his graph? Complete the sentence below.


When light passes from air into glass, the angle of **incidence** is always the angle of **refraction**.


1 mark


(c) **On diagram 2**, draw a line to continue the refracted ray as it leaves the glass block.

1 mark maximum 4 marks

Q9. The diagrams below show the patterns produced on an oscilloscope by three different sound waves.

Which two waves have the same loudness? (i) Write the letters.

..... and

How do the diagrams show this?

1 mark

Which two waves have the same pitch? (ii) Write the letters.

..... and

How do the diagrams show this?

(iii) Shuli is listening to a sound that produces the pattern below.

Describe how the sound that Shuli hears changes between X and Y.

1 mark

(b) The table below shows the maximum time a person can listen to music at different sound levels without damage to the ear.

sound level (decibels)	maximum time (hours)
86	8
88	4
90	2
92	1
94	0.5

Estimate the maximum time a person could listen to a sound of 87 decibels.	
hours	1 mark

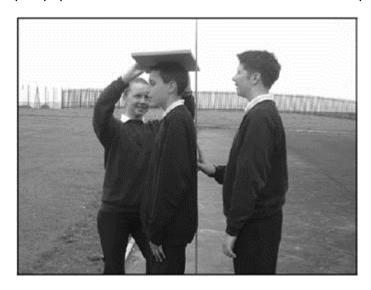
(c) The diagram below shows part of the human ear.

What happens to the ear drum as a sound gets louder?	
	l mark
maximum 5	
maximam o	

Q10. Table 1 gives information about 100 g of five different foods.

food	energy per 100 g	n	nutrients per 100 g of each food				
	of food (kJ)	protein (g)	fat (g)	carbohydrate (g)	calcium (mg)		
banana	403	1.2	0.3	23.2	6		
wholemeal bread	914	9.2	2.5	41.6	54		
butter	3031	0.5	81.7	0	15		
cheese	1708	22.5	34.4	0.1	720		
milk	275	3.2	3.9	4.8	115		

		table 1	
(a)	Lool	k at table 1 .	
	(i)	Which of the four nutrients , protein, fat, carbohydrate or calcium, provides most of the energy in the cheese?	S
	(ii)	Which of the four nutrients provides most of the energy in the wholemeal bread?	
	(iii)	Which of the four nutrients is needed for growth and repair?	
			3 marks
(b)	Look How	recommended daily amount of protein for a woman is 45 g. c at table 1 . many grams of cheese would provide 45 g of protein? the correct box. 50 g 100 g 150 g 200 g	1 mark
(c)	Not	all the types of nutrients needed for a balanced diet are shown in table 1 .	
	Giv	e the name of one of the missing types of nutrient.	
			1 mark


Table 2 shows the recommended daily amount of calcium for a person in four stages of the human life cycle. We need calcium for healthy teeth and bones. (d)

person	recommended daily amount of calcium (mg)
a baby aged 6 months	600
a woman before she is pregnant	500
a pregnant woman	1200
a breast-feeding woman	

table 2

(i)	Use information in table 2 to estimate how much calcium a breast-feeding woman should have each day.
	mg
(ii)	Explain why she would need this amount of calcium.
	maximum 7 marks

Q11. A group of pupils recorded some different characteristics of pupils in their class.

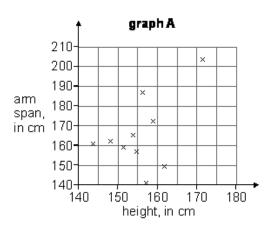
The table below shows their results.

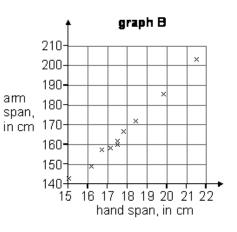
name	gender	height, in cm	mass, in kg	hand span, in cm	arm span, in cm	eye colour
Julie	girl	152	48	17.2	160	blue
Laura	girl	157	54	15.0	141	green
Aftab	boy	159	49	18.4	172	brown
Jenna	girl	144	46	17.4	161	hazel
Barry	boy	148	49	17.4	162	blue
Oliver	boy	172	57	21.5	204	brown
Safina	girl	155	48	16.8	158	brown
Maria	girl	154	50	17.9	166	green
Amanat	girl	162	46	16.2	150	brown
Thomas	boy	157	49	19.9	186	blue

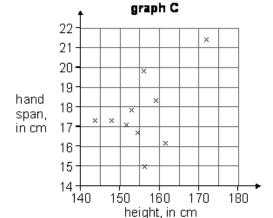
(a	1)	Oliver	concluded	that I	boys c	do not	have	green e	eyes.
----	----	--------	-----------	--------	--------	---------------	------	---------	-------

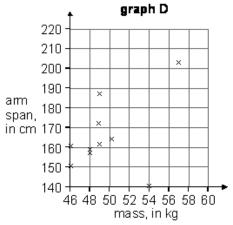
Explain why his	conclusion is	not justified.
-----------------	---------------	-----------------------

.....


(b) Name **two continuous** variables in their table.


1.


2.


1 mark

(c) Look at the scatter graphs below.

Use the data in the scatter graphs to show whether each of the conclusions below is **true**, **false** or you **cannot tell**.

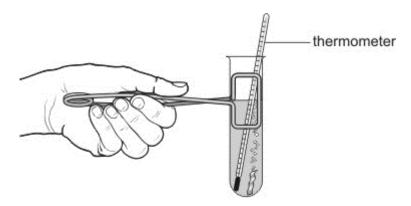
conclusions true or false or cannot tell

Graph C shows that the shortest pupil has the smallest hand span.

Graph B shows the strongest correlation between two variables.

Graph A looks similar to graph C because of the high correlation of arm span to hand span.

Boys are generally taller than girls.


.....

.....

.....

2 marks Maximum 4 marks

Q12. Harry mixed zinc with copper sulphate solution in a test-tube. A displacement reaction took place and the temperature increased.

(a) The word equation for the reaction is shown below.

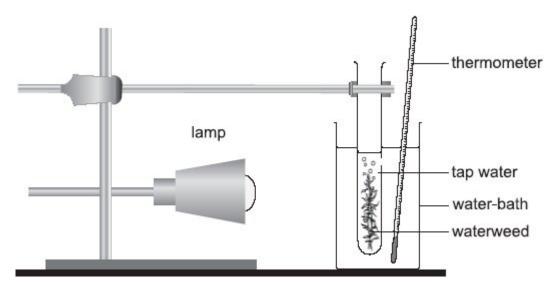
 ${\sf zinc} + {\sf copper} \; {\sf sulphate} \to {\sf zinc} \; {\sf sulphate} + {\sf copper}$

Why is this reaction called a displacement reaction?

1 mark

(b) Harry repeated the experiment with two other metals. He wanted to calculate the temperature rise each time. His results are shown below.

metal added to copper sulphate	temperature at the start (°C)	highest temperature reached (°C)	rise in temperature (°C)
zinc	20.0	36.5	16.5
iron	25.5	38.5	13.0
magnesium	19.5	87.5	68.0


Harry used different starting temperatures.	
Explain why this did not affect his results.	
	4
	i mark

(c)	Part of the reactivity series of metals is shown below.							
		t reac			ium nesium ninium			
	leas	t react	ive	copp	er			
	Use	the re	activity series ab	ove to ans	swer all the	questions belo	w.	
	(i)	•	was the highest ler sulphate?		•	tained with ma		
								1 mark
	(ii)		was the rise in te nuch higher than ate?					er
								1 mark
	(iii)		nich of the followi yes or no in eac			ere be a rise in	temperature?	
			mixture			ere be a rise in perature?		
			aluminium					
			sodium chlo calcium				4	
			zinc sulph					
			2.110 Gaipi1	<u> </u>				

mixture	temperature?
aluminium + sodium chloride	
calcium +	
zinc sulphate	
lead + zinc chloride	
magnesium + iron chloride	

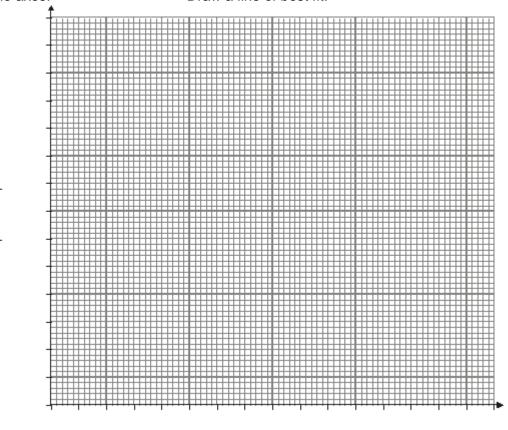
2 marks maximum 6 marks **Q13.** Suzi investigated how temperature affects the number of bubbles produced by waterweed in one minute.

She set up the experiment as shown below.

When the temperature of the water was 10°C the waterweed did **not** produce bubbles.

(a)	Suzi increased the temperature of the water in the water-bath to 20°C. The waterweed started to produce bubbles. She waited two minutes before starting to count the bubbles.	
	Explain why she waited for two minutes before she started to count the bubbles.	
		1 mark

(b)	Suzi	i counted the number of bubbles produced at six different temperatures.	
	Her	results are shown on the graph below.	
numk bubb produ (per 1	oer of les uced	20 A 15 C D X X X 10 B X F X	
		0 10 20 30 40 50 60	1 → 70
		temperature of water-bath (°C)	10
	(i)	Draw a smooth curve on the graph.	
	(-)		mark
	(ii)	Use your curve to find the temperature of water which produced the most bubbles per minute°C	mark
(c)		i predicted that the higher the temperature the more bubbles would be duced.	
	Whi	ich points on the graph support Suzi's prediction?	
			mark
(d)		e produced.	
	Hov	w could she improve the data she collects to find this temperature?	
			mark narks


Q14. Six groups of pupils burned magnesium in air. The magnesium reacted with oxygen to form magnesium oxide.

They recorded the mass of magnesium used and the mass of magnesium oxide formed. Their results are shown in the table.

group	mass of magnesium (g)	mass of magnesium oxide (g)
А	3.2	5.2
В	3.8	6.5
С	4.2	7.0
D	4.9	8.6
Е	5.4	8.0
F	6.1	10.7

- (a) Use their results to draw a graph below.
 - Decide the scale for each axis.
 Plot the points.

Label the axes. • Draw a line of best fit.

4 marks

(b)	(i)	Which group's results do not fit the general pattern? Give the letter.	1 mark
	(ii)	How should the class deal with this 'odd' result?	
			1 mark
(c)		the graph to predict the mass of magnesium oxide that will be formed by ing 7.0 g of magnesium.	
		9	1 mark
(d)		results show the relationship between the mass of magnesium and the magnesium oxide formed.	SS
	Wh	at conclusion could you draw about this relationship?	
		maximum	1 mark 8 marks

Q15.		(a)	Megan was doing time-trials on her bike around a 400 metre horizontal track	ζ.
		(i)	She took 32 seconds to travel 400 m. What was her average speed? Give the unit.	
				1 mark
		(ii)	Compare the forward force on the bike with the backward force on the bike when Megan was travelling at a constant speed.)
				1 mark
	(b)	strea	an then crouched down over the handlebars to make herself more mlined, as shown below. continued to pedal with the same force as before.	
		Com	npare the forward and backward forces on Megan and her bike now.	
				1 mark
		Expl	lain your answer.	
				1 mark

maximum 4 marks